A strenuous experimental journey searching for spectroscopic evidence of a bridging nickel–iron–hydride in [NiFe] hydrogenase

نویسندگان

  • Hongxin Wang
  • Yoshitaka Yoda
  • Hideaki Ogata
  • Yoshihito Tanaka
  • Wolfgang Lubitz
چکیده

Direct spectroscopic evidence for a hydride bridge in the Ni-R form of [NiFe] hydrogenase has been obtained using iron-specific nuclear resonance vibrational spectroscopy (NRVS). The Ni-H-Fe wag mode at 675 cm(-1) is the first spectroscopic evidence for a bridging hydride in Ni-R as well as the first iron-hydride-related NRVS feature observed for a biological system. Although density function theory (DFT) calculation assisted the determination of the Ni-R structure, it did not predict the Ni-H-Fe wag mode at ∼ 675 cm(-1) before NRVS. Instead, the observed Ni-H-Fe mode provided a critical reference for the DFT calculations. While the overall science about Ni-R is presented and discussed elsewhere, this article focuses on the long and strenuous experimental journey to search for and experimentally identify the Ni-H-Fe wag mode in a Ni-R sample. As a methodology, the results presented here will go beyond Ni-R and hydrogenase research and will also be of interest to other scientists who use synchrotron radiation for measuring dilute samples or weak spectroscopic features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic characterization of the key catalytic intermediate Ni-C in the O2-tolerant [NiFe] hydrogenase I from Aquifex aeolicus: evidence of a weakly bound hydride.

Ni-C in the O(2)-tolerant hydrogenase I from Aquifex aeolicus binds a hydride weaker than that in O(2)-sensitive hydrogenases. This is in line with the enhanced light-sensitivity of Ni-C, greater lability of the hydride complex and increased catalytic redox potentials relevant to bio-H(2) oxidation.

متن کامل

The role of nickel and iron-sulfur centers in the bioproduction of hydrogen

Hydrogenases are generally classified as iron-sulfur-containing proteins with four to twelve iron atoms in different cluster arrangements. Through physiological, chemical and spectroscopic studies,nickel has also been found to be a constitutive metal of several hydrogenases and shown to be involved in a redox linked process. The [NiFe] hydropnnses are now the most intensivelly studied nickel en...

متن کامل

A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase.

Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN(-)) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six aux...

متن کامل

Discovery of Dark pH-Dependent H+ Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate

Despite extensive studies on [NiFe]-hydrogenases, the mechanism by which these enzymes produce and activate H2 so efficiently remains unclear. A well-known EPR-active state produced under H2 and known as Ni-C is assigned as a Ni(III)-Fe(II) species with a hydrido ligand in the bridging position between the two metals. It has long been known that low-temperature photolysis of Ni-C yields distinc...

متن کامل

Synthetic Active Site Model of the [NiFeSe] Hydrogenase

A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe('S2Se2')(CO)3] (H2'S2Se2' = 1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni('S2Se2')] with [Fe(CO)3bda] (bda = benzylideneacetone). X-ray crystal structure analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015